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1 Introduction

Recently, inverse problems are more attracted the attention of experts, because their applied
and theoretical significance. The special roles among the inverse problems play the problems
of determining the coefficients of the considered equations. In some cases the properties of the
investigated medium (coefficients of the equations) are unknown. And then the inverse problems
arise that requires reconstructing the coefficients of the equation by given information regarding
the solution of the direct problem. A lot of papers devoted to the solution of such problems due
their strong relation to the practice (see (Kabanikhin, 2009); (Iskakov et al., 2014); (Yonchev,
2017) and the works cited therein).

2 Statement of the problem and main results

Consider the problem of determining a pair (u(x, t), υ(x, t)) ∈W 1
2 (Q)×L∞(Q) from the following

relations

∂2u

∂t2
− ∂2u

∂x2
+ v(x, t)u = f(x, t), (x, t) ∈ Q = (0, l)× (0, T ), (1)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), 0 ≤ x ≤ l, (2)

u (0, t) = u (l, t) = 0 , 0 ≤ t ≤ T, (3)

u (xi, t) = gi(t), 0 ≤ t ≤ T, i = 1 , ..., n , (4)

where f ∈ L2(Q), u0 ∈
0

W 1
2 (0, l), u1 ∈ L2(0, l) , gi ∈ L2(0, T ) are given functions, xi ∈

(0, l) - various given points.
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The problem (1), (2), (3) for a given function v(x, t) is a direct problem in the domain Q,
and the problem (1)-(4) an inverse problem to the problem (1)-(3).

Let us reduce the inverse problem (1)-(4) to the following optimal control problem: to find
a function v(x, t) from

V = { v (x, t) ∈ L∞(Q) : v (x, t) ∈ [α, β ] a.e. Q} ,

that minimizes the functional

J0(v) =
1

2

∫ T

0

n∑
i=1

[u(xi, t ; v)− gi(t)]
2dt (5)

subject to (1)-(3), where u(x, t; v)is the solution of the problem (1)-(3), where v = v (x, t),
α, β , α < β are given numbers, v(x, t) - control and V - the class of admissible controls.

Note that if min
v∈V

J0(v) = 0, then the additional conditions (4) are satisfied.

Let us regularize the problem (1) - (3), (5) as follows: find a function v(x, t) from V , that
minimizes the functional

Jε(v) =
1

2

∫ T

0

n∑
i=1

[u(xi, t ; v)− gi(t)]
2dt +

ε

2

∫
Q
(v − ω)2dx dt , (6)

where ε > 0 is given number, ω(x, t) ∈ L2(Q) is a given function. This problem we call a
problem (1) - (3), (6).

As a generalized solution of the boundary value problem (1)-(3) from W 1
2 (Q) for each fixed

control v ∈ V we assume the function u = u (x, t ; v) from W 1
2,0 (Q), that is of the equal to

u0(x) by t = 0 and satisfies the integral identity

∫
Q

[
−∂u
∂t ·

∂η
∂t +

∂u
∂x · ∂η

∂x + v(x, t)uη
]
dx dt −

∫ l
0 u1(x) η(x, 0) dx =

=
∫
Q f(x, t) η dx dt,

(7)

for all η = η (x, t) from W 1
2,0 (Q), equal to zero for t = T .

It follows from the results Ladijhenskaya (1973) (p.209-215) that by imposed above conditions
for each fixed v ∈ V problem (1)-(3) has a unique generalized solution from W 1

2 (Q) and the
estimate

∥u∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (0, l)
+ ∥u1∥L2(0, l)

+ ∥f∥L2(Q)

]
. (8)

is valid.

Here and later on we denote by c various constants, not depending on the estimated quantities
and admissible controls.

Theorem 1. Suppose that the conditions of the formulation of the problem (1) - (3), (6) are
satisfied.

Then there exists a dense subset G of the space L2(Q), such that for all ω ∈ G with ε > 0
the problem (1) - (3), (6) has a unique solution.

Proof. We prove the continuity of the functional

J0(v) =
1

2

∫ T

0

n∑
i=1

[u(xi, t ; v)− gi(t)]
2dt

in the norm of the space L2(Q) in the set V .
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Let δ v ∈ L∞(Q) be an increment of the control on the element v ∈ V such that v+δ v ∈ V.
Denote δ u(x, t) ≡ u(x, t; v+δ v)− u(x, t; v). It is clear that the function δ u (x, t) is a generalized
solution from W 1

2 (Q) for the boundary problem

∂2δ u

∂t2
− ∂2δ u

∂x2
+ (v + δ v) δ u = −u δ v, (x, t) ∈ Q, (9)

δ u |t=0 = 0 ,
∂δ u

∂t
|t=0 = 0, 0 ≤ x ≤ l, (10)

δ u (0, t) = δ u (l, t) = 0 , 0 ≤ t ≤ T. (11)

The generalized solution W 1
2 (Q)of the problem (9)-(11) is equal to zero by t = 0 and satisfies

to the identity∫
Q

[
∂δ u

∂t
· ∂η
∂t

− ∂δ u

∂x
· ∂η
∂x

]
dx dt =

∫
Q
[(v + δ v) δ u+ u δ v] η dx dt, (12)

for all η = η (x, t) ∈ W 1
2,0 (Q), equal to zero by t = T .

Let us prove that for the solution of the problem (9)-(11) the following estimate is valid

∥δ u∥W 1
2 (Q) ≤ c ∥δ v∥L2(Q) . (13)

For this purpose we use Faedo-Galerkin method. Let {φk(x)} be a fundamental system in
0

W 1
2 (0, l) and

∫ l
0 φk(x)φm(x) dx = δmk , where δmk is Cronekker’s symbol.

Approximate solution of the problem (9)-(11) we search in the form

δ uN (x, t) =
N∑
k=1

cNk (t)φk(x)

from the relations∫ l

0

∂2δ uN

∂t2
· φm(x) dx +

∫ l

0

∂δ uN

∂x
· dφm(x)

dx
dx+

+

∫ l

0
(v + δ v) δ uNφm(x) dx = −

∫ l

0
u δ vφm(x) dx , m = 1, ..., N,

(14)

cNk (0) = 0,
d cNk (t)

dt
|t=0 = 0. (15)

The equality (14) is a system of linear ordinary differential equations of the second order

relatively t for the unknown functions cNk (t), k = 1, ..., N solved with respect to
d2cNk
dt2

. This

system is uniquely solvable by initial data (15), and
d2cNk
dt2

∈ L2(0, T ). Multiplying each equality

from (14) by its d
dtc

N
m(t) and summing relatively m from 1 to N we get∫ l

0

∂2δ uN

∂t2
· ∂δ u

N

∂t
dx +

∫ l

0

∂δ uN

∂x
· ∂

2δ uN

∂t ∂x
dx =

= −
∫ l

0
(v + δ v) δ uN

∂δ uN

∂t
dx−

∫ l

0
u δ v

∂δ uN

∂t
dx .

From this under the imposed conditions we get∫ l

0

[
(
∂δuN

∂t
)2 + (

∂δuN

∂x
)2
]
dx ≤ c

∫ t

0

∫ l

0

[∣∣δuN ∣∣2 + ∣∣∣∣∂δuN∂t
∣∣∣∣2
]
dxds+ c

∫ t

0

∫ l

0
|uδv|2 dxds.
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Since the fixed solution u = u(x, t; v) of the problem (1)-(3) has a property

u ∈ C

(
[0, T ] ;

0

W 1
2 (0, l)

)
, (Lions & Madjenes, 1971)(p.307) this function can be assumed con-

tinuous on Q̄. So it is bounded on Q̄. Then from the above inequality follows that

∫ l

0

[(
∂δuN

∂t

)2

+

(
∂δuN

∂x

)2
]
dx ≤ c

∫ t

0

∫ l

0

[(
δuN

)2
+

(
∂δuN

∂t

)2
]
dxds+ c

∫ t

0

∫ l

0
|δv|2 dxds

Considering the equivalency of the norm in
0

W 1
2 (0, l) from the last we obtain

∫ l

0

[∣∣δuN ∣∣2 + ∣∣∣∣∂δuN∂t
∣∣∣∣2 + (∂δuN∂x

)2
]
dx ≤

≤ c

∫ t

0

∫ l

0

[(
δuN

)2
+

(
∂δuN

∂t

)2

+

(
∂δuN

∂x

)2
]
dxds+ c

∫ t

0

∫ l

0
|δv| 2dxds.

Applying here Gronwall’s lemma we get

∫ l

0

[∣∣δuN ∣∣2 + ∣∣∣∣∂δuN∂t
∣∣∣∣2 + ∣∣∣∣∂δuN∂x

∣∣∣∣2
]
dx ≤ c

∫ T

0

∫ l

0
|δv| 2dxdt, ∀t ∈ [0, T ] .

Integrating this over t from 0 to T we arrive to∥∥δ uN∥∥
W 1

2
≤ c ∥δ v∥L2(Q) .

This inequality allows one to choose a subsequence (we denote it also by
{
δuN

}
) from the

sequence
{
δuN

}
, N = 1, 2, ..., that converges weakly in W 1

2 (Q) to some element δu ∈W 1
2 (Q).

Since the norm in the Hilbert space is weakly lower semicontinuous, it follows from the last
that for the weak limit δu of the sequence

{
δ uN

}
in W 1

2 (Q) the following estimation is valid

∥δ u∥W 1
2 (Q) ≤ c ∥δ v∥L2(Q) .

Thus the estimation (13) is proved.

Following the embedding theorem (Ladijhenskaya, 1973)(p.70) W 1
2 (Q) is bloodedly embed-

ded into L2(0, T ) so from (13) follows that

∥δ u (xi, t )∥L2(0,T )
≤ c ∥δ u∥W 1

2 (Q) ≤ c ∥δ v∥L2(Q) , i = 1, ..., n .

Therefore

∥δ u (xi, t)∥L2(0,T )
→ 0 by ∥δ v ∥L2(Q) → 0. (16)

Increment of the functional Jo(v) we can write as

∆J0(v) = J0(v + δv)− J0(v) =

∫ T

0

n∑
i=1

[u(xi, t; v)− gi(t)] δu (xi, t))dt+
1

2

∫ T

0

n∑
i=1

|δu (xi, t)| 2dt .

From this and (16) one can get the continuity of the functional Jo(v) with respect to the
norm of the space L2(Q) on the set V .

Thus the functional J0(v) is continuous and lower bounded on V . The set V is closed and
bounded in the uniform convex Banach space L2(Q). Then the statement of the Theorem 1
follows from the known theorem (Goebel, 1979). Theorem is proved.
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Now we study Frechet differentiability of the functional (6).
Let ψ = ψ(x, t; v) be generalized solution from W 1

2 (Q)of the adjoint problem

∂2ψ

∂t2
− ∂2ψ

∂x2
+ vψ = −

n∑
i=1

[u(x, t; v − gi(t)] δ(x− xi), (17)

ψ

∣∣∣∣t=T = 0,
∂ψ

∂t

∣∣∣∣
t=T

= 0, ψ(o, t) = ψ(l, t) = 0, (18)

where δ(x) is Dirac function.
As a generalized solution from W 1

2 (Q) of the boundary problem (17), (18) by given v ∈ V ,
we take the function ψ = ψ(x, t; v) from W 1

2 (Q) that is equal to zero by t = T and satisfies the
integral equality∫

Q

[
−∂ψ
∂t

· ∂µ
∂t

+
∂ψ

∂x

∂µ

∂x
+ vψµ

]
dxdt = −

n∑
i=1

∫ T

0
[u(xi, t; v)− gi(t)] µ(xi, t)dt, (19)

for all equal to zero by t = 0 functions µ = µ(x, t) ∈W 1
2,0(Q).

Since u ∈W 1
2 (Q) in the equality (19) u(xi, t; v) has a sense.

Theorem 2. Let the conditions imposed on the data of the problem (1)-(3), (6) be fulfilled.
Then the problem (17), (18) has unique generalized solution from W 1

2 (Q).

Proof. We’ll use Faedo-Galerkin’s method. As a fundamental system {φk(x)} in
0

W 1
2 (0, l) we

take
{√

2
l sin

πk
l x
}∞

k=1
.

Approximate solution ψN (x, t) we search in the form

ψN (x, t) =
N∑
k=1

CNk (t)φk(x)

from the relation∫ l

0

∂2ψN

∂t2
φmdx+

∫ l

0

∂ψN

∂x

dφm
dx

dx =

n∑
i=1

[u(xi, t; v)− gi(t)]φm(xi),m = 1, ..., N, (20)

and

CNk (T ) = 0,
dCNk (t)

dt
|t=T = 0 . (21)

The equality (20) is a system of linear differential equations of the second order with respect

to t for all unknown CNk (t), k = 1, ..., N , solved relatively
d2CN

k
dt2

, and the terms

n∑
i=1

[u (xi, t; v)− g(t)]φm(xi) ∈ L2(0, T )

. This system is uniquely solvable by initial data (21) and
d2CN

k
dt2

∈ L2(0, T ).

Multiplying each of equalities from (20) by its own d
dtC

N
m (t) and taking a sum with respect

to m from 1 to N we arrive to the equality∫ l

0

∂2ψ
N

∂t2
∂ψN

∂t
dx+

∫ l

0

∂ψN

∂x
· ∂

2ψN

∂t∂x
dx =

= −
n∑
i=1

[u(xi, t; v)− gi(t)]
∂ψN (xi, t)

∂t
−

l∫
0

vψN
∂ψN (x, t)

∂t
dx
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or

1

2

d

dt

∫ l

0

[(
∂ψN

∂t

)2

+

(
∂ψN

∂x

)2
]
dx =

= −
n∑
i=1

[u (xi, t; v)− gi(t)]
∂ψN (xi, t)

∂t
−

l∫
0

vψN
∂ψN (x, t)

∂t
dx

From this integrating over t from t to T considering (21) we obtain∫ l

0

[(
∂ψN

∂t

)2

+

(
∂ψN

∂x

)2
]
dx =

= 2

∫ T

t

n∑
i=1

[u (xi, s; v)− gi(s)]
∂ψN (xi, s)

∂t
ds+ 2

T∫
t

l∫
0

vψN (x, s)
∂ψN (x, s)

∂t
dxds.

Successively solving the system of ordinary differential equations (20) with respect to the un-
known functions CN1 (t), ..., CNN (t) under conditions (21) and using some known properties of

trigonometric functions we find that
∣∣∣∂ψN (xi,t)

∂t

∣∣∣ ≤ c uniformly relatively N and t ∈ [0, T ] , i =

1, ..., n.
Therefore there exists a constant c such that∣∣∣∣∂ψN (xi, t)∂t

∣∣∣∣2 ≤ c

∫ l

0

∣∣∣∣∂ψ(x, t)∂t

∣∣∣∣2 dt, i = 1, ..., n.

Then it is clear that∫ l

0

[(
∂ψN

∂t

)2

+

(
∂ψN

∂x

)2
]
dx ≤

∫ T

t

n∑
i=1

|u (xi, s; v)− g(s)|2 ds+

+c

∫ T

t

∫ l

0

[∣∣ψN (x, s)∣∣2 + ∣∣∣∣∂ψN (x, s)∂t

∣∣∣∣2 + ∣∣∣∣∂ψN (x, s)∂x

∣∣∣∣2
]
dxds.

Considering the equivalency of the norms in
0

W 1
2 (0, l) we have∫ l

0

[∣∣ψN ∣∣2 + ∣∣∣∣∂ψN∂t
∣∣∣∣2 + ∣∣∣∣∂ψN∂x

∣∣∣∣2
]
dx ≤ c

∫ T

t

n∑
i=1

|u(xi, s; v)− gi(s)| 2ds+

+c

∫ T

t

∫ l

0

[∣∣ψN ∣∣2 + ∣∣∣∣∂ψN∂t
∣∣∣∣2 + (∂ψN∂x

)2
]
dxds.

From the last applying the Gronwall’s lemma we get∫ l

0

[∣∣ψN (x, t)
∣∣2 + ∣∣∣∣∂ψN (x, t)∂t

∣∣∣∣2 + ∣∣∣∣∂ψN (x, t)∂x

∣∣∣∣2
]
dx ≤

≤ c

∫ T

0

n∑
i=1

|u(xi, t; v)− gi(t)| 2dt, ∀t ∈ [0, T ]

or

∥∥ψN∥∥
W 1

2 (Q)
≤ c

∫ T

0

n∑
i=1

|u(xi, t; v)− gi(t)| 2dt. (22)
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Now doing as in Ladijhenskaya (1973) (pp.214-215) we obtain that the weak limit ψ(x, t) of
the sequence

{
ψN (x, t

}
by N → ∞in W 1

2 (Q) is a generalized solution of the problem (17), (18).
The uniqueness of the solution of the problem (17), (18) is proved by standard way. Theorem
is proved.

Note that, considering the weak lower semicontinuity of the norm in the Hilbert space, for
the limit function ψ(x, t) the inequality (22) hold true, i.e.

∥ψ∥W 1
2 (Q) ≤ c

∫ T

0

n∑
i=1

|u(xi, t; v)− gi(t)|2 dt. (23)

Taking into account here the estimate (8) and the fact that W 1
2 (Q) is bounded embedded

into L2(0, T ) (Ladijhenskaya, 1973)(p.70) we get

∥ψ∥W 1
2 (Q) ≤ c

[
∥u0∥W 1

2 (0,l)
+ ∥u1∥L2(0,l)

+ ∥f∥L2(Q) +

n∑
i=1

∥gi∥L2(0,T )

]
. (24)

Theorem 3. Let the conditions of the Theorem 1 be fulfilled. Then the functional (6) is con-
tinuously differentiable in the Frechet sense on V and its differential at the point v ∈ V by the
increment δv ∈ L∞(Q) is defined by the formula

< J
′
ε(v), δv >=

∫
Q
uψδvdxdt+ ε

∫
Q
(v − ω)δvdxdt. (25)

Proof. Consider the increment of functional (6):

∆Jε(v) = Jε(v + δv)− Jε(v) =

∫ T

0

n∑
i=1

[u(xi, t; v)− gi(t)] δu(xi, t)dt+

+ε
∫
Q(v − ω)δvdxdt+ 1

2

∫ T

0

T∑
i=1

|δu(xi, t)| 2dt+
ε

2

∫
Q
|δv|2 dxdt .

(26)

If take η = ψ(x, t; v), in (12) take µ = δ u (x, t) in (19) and add the obtained relations then
we get ∫ T

0

n∑
i=1

[u(xi, t; v)− gi(t)] δu(xi, t)dt =

∫
Q
uψδvdxdt+

∫
Q
ψδvδudxdt.

Considering this in (26) we have

∆Jε(v) =

∫
Q
[uψδv + ε(v − ω)δv] dxdt+R, (27)

where

R =

∫
Q
ψδvδu dxdt+

1

2

∫ T

0

n∑
i=1

|δu(xi, t)| 2dt+
ε

2

∫
Q
|δv|2 dxdt . (28)

It is clear that the expression in the right hand side of (25) by given v ∈ V defines a linear
functional of δv. Moreover∣∣∣∣∫

Q
[uψ + ε(v − ω)] δvdxdt

∣∣∣∣ ≤ ∥u∥L2(Q) ∥ψ∥L
2(Q)

∥δv∥L∞(Q) + ε ∥v − ω∥L2(Q) · ∥δv∥L∞(Q) ≤

≤ c ·
[
∥u∥W 1

2 (Q) · ∥ψ∥W 1
2 (Q) + ε ∥v − ω∥L2(Q)

]
· ∥δv∥L∞(Q) .

If to consider here the estimations (8), (24) we get boundedness of the functional in the right
hand side of (25) with respect to δν .
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Now we estimate the remainder term R, in (27). Using Cauchy-Bunyakovski inequality we
get

|R| ≤ ∥ψ∥L2(Q) · ∥δu∥L2(Q) · ∥δv∥L∞(Q) +
1

2

n∑
i=1

∥δu(xi, t)∥2L2(0,T )
+
ε

2
∥δv∥2L∞(Q) .

Considering here the boundedness of the embedding W 1
2 (Q) → L2(0, T ), (Ladijhenskaya,

1973)(p.70) and (13), we get R = 0
(
∥δv∥L∞(Q)

)
. Then as follows from (27) the functional (6)

is differentiable in Freshe sense on V and the formula (25) is valid.

Let us show that the mapping v → J
′
ε(v) defined by the equality (25) acts continuously from

V to the adjoint to L∞(Q) space (L∞(Q))∗.

Let δψ(x, t) = ψ(x, t; v + δv) − ψ(x, t; v). From (17), (18) follows that δψ is a generalized
solution from W 1

2 (Q) for the boundary problem

∂2δψ

∂t2
− ∂2δψ

∂x2
+ vδψ = −

n∑
i=1

δu(x, t)δ(x− xi), (29)

δψ

∣∣∣∣t=T = 0,
∂δψ

∂t

∣∣∣∣
t=T

= 0, δψ(0, t) = δψ(l, t) = 0. (30)

Similarly to (23) the estimate

∥δψ ∥W 1
2 (Q) ≤ c

n∑
i=1

∥δu (xi, t)∥L2(0,T )
, i = 1, ...., n.

is valid.

Due to the boundedness of the embedding W 1
2 (Q) → L2(0, T ) (Ladijhenskaya, 1973)(p.70)

from the last follows that

∥δψ∥W 1
2 (Q) ≤ c ∥δu∥W 1

2 (Q) . (31)

Then (31) and (13) give the estimation

∥δψ∥W 1
2 (Q) ≤ c ∥δv∥L∞(Q) . (32)

Using (25) and Cauchy-Bunyakovski inequality we get∥∥∥J ′
ε(v + δv)− J

′
ε(v)

∥∥∥
(L∞(Q))∗

≤

≤ c
[
∥u∥L

2
(Q) · ∥δψ∥L2(Q) + ∥ψ∥L2(Q) · ∥δu∥L2(Q) + ∥δu∥L2(Q) · ∥δψ∥l2(Q)

]
+ ε ∥δv∥L∞(Q) .

Due to (13) and (32) the right hand side of this inequality tents to zero by ∥δ v∥L∞(Q) → o.

From this follows that v → J
′
ε(v) is a continuous mapping from V to (L∞(Q))∗.

Theorem is proved.

Theorem 4. Let the conditions of the Theorem 3 be fulfilled. Then for the optimality of the
control v∗(x, t)in the problem (1)-(3), (6) it is necessary the fulfillment of the inequality∫

Q
[u∗(x, t)ψ∗(x, t) + ε(v∗(x, t)− ω(x, t))] (v(x, t)− v∗(x.t))dxdt ≥ 0 , (33)

For any v = v(x, t) ∈ V , where u∗(x, t) = u (x, t; v∗), ψ∗(x, t) = ψ(x, t; v∗) is a solution of the
problem (1)-(3) and (17), (18) correspondingly by v = v∗(x, t).
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Proof. The set V is convex in L∞(Q). In addition, according to Theorem 3 functional Jε(v)
is continuously Frechet differentiable on V and its differential at the point v ∈ V is defined by
(25).

Then by Theorem 5 from (Vasilyev, 1981)(p.28) on the element v∗ ∈ V it is necessary
fulfillment of the inequality < J

′
ε(v∗), v − v∗ >≥ o for all v ∈ V . From this and (25) follows the

validity of (33) for all v ∈ V . Theorem is proved.

Note. On the basis of the obtained necessary condition an iterative algorithm can be offered
for finding the approximate solutions of problem (1)-(3), (6).
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